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TWO-EQUATION, DEPTH-INTEGRATED TURBULENCE CLOSURE 

FOR MODELING GEOMETRY-DOMINATED FLOWS 

Introduction 

1. When applying depth-integrated hydrodynamic and dispersion 

models to investigate large-scale water quality problems in coastal 

environments, it is usually adequate to adopt the simplest of eddy 

viscosity/diffusivity closure hypotheses in which the depth-integrated 

eddy viscosity/diffusivity coefficient is either assumed to be constant 

or related to the water depth and shear velocity. However, when local 

geometry-dependent flow phenomena such as separation and recirculation 

are deemed important to the water quality investigation, it is then 

necessary to adopt a more sophisticated level of closure for the depth- 

integrated equations of motion and constituent transport equations. 

2. It is the Intent of this discussion to (a) describe the clo- 

sure problem associated with the use of the depth-integrated equations 

of motion, (b) provide a detailed description of the two-equation (k-e) 

turbulence closure model, and (c) present the results of steady-state 

test simulations utilizing k-e turbulence closure. 

3. In addition, the limitations of the model developed by the 

author are discussed with specific recommendations for future 

improvement. 

Turbulence Closure 

Depth-integrated equations 
of motion and closure problem 

4. Under the assumption of a homogeneous, incompressible, viscous 

flow characterized by a hydrostatic pressure distribution, with wind and 

Coriolis forces neglected, the depth-integrated equations of motion are 

written: 



Conservation of Mass 

-32L + 5— = o 
at  ax (i) 

Conservation of Momentum 

3(V V h) 3(V h) m 
at 

SJLl+g3(h2/2) !fb + T 
3X      g  3X     gn 3X    bm 
n mm 

3T 
mn 

3X = 0 (2) 

where 

m,n =1,2, and repeated indices require summation 

t = time 

V • two-dimensional depth-averaged velocity vector (U, V) 

h = water depth 

C = coordinate d 
m 
g = acceleration due to gravity 

X = coordinate directions (x, y) 

T  = components of the bottom shear stress per unit mass 

z, = channel bottom elevation above an arbitrary datum 

T  = components of the depth-integrated effective stress tensor 
per unit mass 

5. The depth-integrated effective shear stress tensor as defined 

by Kuipers and Vreugdenhil (1973) and Flokstra (1977) contains the 

(I) viscous stresses, (II) the turbulent Reynold's stresses, and 

(III) the momentum dispersion terms which arise from depth integrating 

the nonlinear convective acceleration terms in the equations of motion. 

Specifically, the depth-integrated effective stress tensor per unit mass 

is written: 

mn 

h+zb 

dz (3) 

(I) (ID (III) 

where 

u_ 



v = kinematic viscosity 

v = time-averaged velocity components (u, v) 

v' = horizontal turbulent velocity fluctuations m 
6. The closure problem associated with the use of the depth- 

integrated equations of motion results from the need to parameterize 

terms II and III in the effective stress tensor. 

7. The contribution of the viscous stresses (term I) can be 

neglected simply because its effects are transparent to the computation 

at the scales of motion modeled in a fully turbulent hydraulic problem. 

8. In the recent literature, the treatment of Reynolds stress 

closure (term II) has ranged from neglecting the terms to the concept of 

"large eddy" simulations (Leonard 1974) where, by means of spatial 

filtering of the equations of motions, only the small-scale or "subgrid- 

scale" Reynolds stresses need be modeled. Within these two extremes lie 

a number of alternative closure schemes which exhibit a wide variation 

in complexity (Reynolds 1976). 

9. One closure technique that has enjoyed considerable success in 

the simulation of a variety of turbulent flows is the two equation (k-e) 

turbulence model described by Launder and Spalding (1974) and Rodi 

(1980). Applications of a depth-integrated version of the k-e turbu- 

lence model have been presented by Rastogi and Rodi (1978) and McQuirk 

and Rodi (1978). A detailed discussion of the three-dimensional and 

depth-integrated version of the k-e closure model is the subject of 

the next section. 

10. Parameterization of the momentum dispersion terms (III) is 

straightforward if one has an a priori knowledge of the vertical dis- 

tribution of the horizontal velocity components.  Unfortunately, theo- 

retical velocity distributions are available for only the simplest of 

flows such as flow in a wide channel or long circular channel bend. 

Discussions of the importance of the momentum dispersion terms and 

approximate closure schemes are presented by Flokstra (1977), Abbott and 

Rasmussen (1977), and Lean and Weare (1979). A common feature of all of 

the existing closure schemes for momentum dispersion is that the magni- 

tude of the components of momentum dispersion that can be important is 

L. 



directly proportional to the ratio of the depth of flow to the radius of 

curvature of the depth-mean streamlines. Consequently, if one restricts 

their attention to flows that are much wider than deep, which is usually 

the case in estuarine and other coastal flows, then the need to address 

momentum dispersion is obviated. 

Depth-averaged turbulent 
Reynold's stress closure 

11.  The k-e turbulence closure model presented by Launder and 

Spalding (1974) is based on the Boussinesq eddy viscosity hypothesis 

(Hinze 1959), which assumes that the turbulent Reynold's stresses are 

proportional to the mean strain rates. Using three-dimensional tensor 

notation, the turbulent Reynold's stresses are written: 

-vjv = 
i 3 3 k6ij H (4) 

where 

itj =1» 2, 3, and repeated indices require summation 
k = 1 vivi' tne turbulent kinetic energy per unit mass 

6.. = Kronecker delta 

Unlike the molecular viscosity v , the turbulent eddy viscosity v 

is flow-dependent and can vary both in space and time. An approxima- 

tion for the distribution of the curbulent eddy viscosity is obtained by 

assuming that it is proportional to the product of the characteristic 

velocity and length scale of turbulence, namely: 

v - k1/2i (5) 

where I    equals the macroscale of turbulence (a measure of the size of 

the energy containing eddies). An inviscid estimate of the energy 

dissipation rate per unit mass e is obtained when one assumes that the 

amount of energy dissipated at the small scales of turbulence equals the 

rate of supply at the large scales. ' 



12. Again utilizing the characteristic velocity and length scales 

of turbulence, dimensional considerations require that (Tennekes and 

Lumley 1972) 

3/2 
(6) 

Substitution of Equation 6 into Equation 5 yields a functional relation- 

ship for the turbulent eddy viscosity in terms of the kinetic energy of. 

turbulence k , and its rate of dissipation e , specifically: 

v e (7) 

where C  is an empirical coefficient. 

13.  In principle, solution of the exact transport equations for 

the turbulence kinetic energy k , and its rate of dissipation E , 

enables one to completely specify the temporal and spatial distribution 

of the turbulent eddy viscosity. However, construction of the transport 

equations for k and e results in an additional closure problem. 

Consider first the turbulence kinetic energy equation (Hinze 1959) : 

3k , ^^ 
3t    3x, 

3 
3x. i\P 

(I) 

3v. 

<V1V? J?. 
(ID 

(8) 

+ v 3 
3x, 

/3v!   3v'\    /3v,* 

j I 3x   3x I V 3x     , I 2 

(III) 

3v.'\ 3v,' 

J-- 
(IV) 

where P1  denotes turbulent pressure fluctuations, p is the fluid 

density, and the over-bar represents a time average.  The closure prob- 

lem results from the presence of the unknown pressure and velocity 

fluctuation correlations in term I. Physically, term I represents the 

7 
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convective diffusion of the total turbulence mechanical energy per unit 

mass by turbulence.  This term acts as a redistribution mechanism, which 

suggests the use of a gradient diffusion model (Rodi 1980), or: 

i \ P   / a.   3x. (9) 

where a,  is an empirical constant.  Equation 4 may be substituted 

directly for the turbulent Reynold's stresses in the turbulence produc- 

tion term (II).  Term IV is by definition the energy dissipation rate 

per unit mass,  e  .  Finally, term III represents the work done by the 

viscous shear stresses.  For high Reynold's number flows, this term is 

small and can be neglected (Hanjalic and Launder 1972).  Making the 

appropriate substitutions, the three-dimensional model equation for the 

turbulence kinetic energy is written: 

3k . 8<*ik)   3 (\  3k \ , ._, ß.Üß 
3t    3x.    3x. la, 3x. /   t \ 3x.   3x. }  3x. (10) 

14.  The exact transport equation for the energy dissipation rate 

per unit mass, for large Reynold's numbers, reads (Harlow and Nakayama 

1968): 

3e .  3 ,  > 
Bt + 3^ (EVi) 

-2v 
3v. /3v! 3v'   3v'3v'\ 

3x \3x  3x   3x.3x j 
r \ s  s    i r/ 

(I) 

2v 
\ 3x 3x 3x / 
\  r  s  s/ 

(11) 

(ID (Ill) 

-%ty'' 
v     3    /3P'   dvi\ 

(IV) (V) 
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*m 

where 

r,s = 1, 2, 3, and repeated indices require summation 

e1 = turbulent fluctuations of the energy dissipation rate per 
unit mass 

15. The closure approximations for Equation 11 were first pre- 

sented by Hanjalic and Launder (1972). Their approach was to param- 

eterize I-III in terms of the Reynold's stresses, mean strain rate, 

turbulence kinetic energy, and its rate of dissipation per unit mass, 

and to neglect term V on the basis of being small. Term I represents 

the production mechanisms for e and was approximated accordingly 

Term I = -C, ({) (vV) j± (12) 
3VJ 

c r 

Terms II and III were grouped together and parameterized as follows: 

2 
II + III = C2 ~ (13) 

16.  The argument used to support Equation 13 was that the sum of 

term II, which represents the generation rate of vorticity fluctuations 

due to the self-stretching mechanism, and term III, which represents the 

viscous decay of dissipation, should be controlled by the dynamics of 

the energy cascade.  Subsequently, if the Reynold's number is suffi- 

ciently large to allow the existence of an inertial subrange, an invis- 

cid estimate based on dimensional considerations should be appropriate. 

Term IV represents the turbulent diffusion of e ,  which clearly 

suggests a closure of the form: 

v 
Term IV = — — (14) a    x. 

e j 

where a      is an empirical constant.  Collecting the various approxima- 

tions yields the complete model equation for the energy dissipation rate 

per unit mass: 

>.. 



3t    3x x± "' 3x I a£ 3x )  4Vt k I 3x   3Xi ) 3x. " k     U:>; 

17.  Estimates for the empirical constants found in Equations 10 

and 15 were obtained by applying the model equations to simple turbulent 

flows for which experimental data were available.  For example, in a 

local equilibrium, two-dimensional boundary layer, the production of 

turbulence energy is balanced by dissipation, and Equation 10 reduces 

to: 

Wf*«e (16) 

A consistent closure approximation for the Reynold's stress is: 

3u 

which yields 

U'V' = Vt 15 

u'v'2 - vfce (18) 

vt - Cv f- (19) 

Thus, substitution of Equation 18 into Equation 19 results in 

Now, by definition, 

1/2  u'v' 
Cv  --T- (20> 

18. Experimental-data extracted from the work of Laufer (1951) 

suggest that u'v'/k varies from 0.22 to 0.3, which gives a range of 

Cv from 0.05 to 0.09. The value of C2 was found to lie between 1.9 

and 2.0 (Hanjalic and Launder 1972; Launder and Spalding 1974) when 

10 
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r~ 

computed using measured decay rates of the turbulent kinetic energy 

behind a grid (Townsend 1956). The constant C. was obtained by exam- 

ining the form of the dissipation equation in the constant shear stress 

region near the wall. Here, convection is negligible with production 

and dissipation approximately in balance, thus 

-I 
' • 7} <21> 

where 

U^ = shear velocity 

K = von Kamans constant 

y = distance from the wall 

Substituting Equation 21 into Equation 15 with some simplification 

yields 

v
t 

u*y 
- -r" (ci - V TS <22> 

e 

In the near wall region (Townsend 1956) 

vfc - <U*y (23) 

thus 

A 
1   z a  UT 

e * 

where by definition 

•5 c»2 m v 

and therefore 

11 



C2- r,  r1/2 a C 
e v 

(26) 

which specifies the value of C.  when C  ,  C» , a,    , and a 

are known.  The constants a,  and a  , which are similar to turbulent 
k       E 

Prandtl or Schmidt Numbers, were assumed to be of order unity and deter- 

mined along with the recommended values of the other constants via 

computer optimization.  This was done by adjusting the values of the 

various constants until reasonable agreement between computed and experi- 

mental results was obtained.  The values recommended by Launder and 

Spalding (1974) are as follows: 

0.09 

1.44 

1.92 

1.0 

1.3 

With the appropriate specifications of boundary and initial conditions, 

Equations 7, 10, and 15 and the Launder and Spalding values presented 

above constitute the complete three-dimensional k-e  turbulence closure 

model. 

19.  To be of use in approximating the depth-averaged Reynold's 

stress in Equation 7, it is necessary to cast the three-dimensional 

k-e model into a depth-integrated form.  Realizing that turbulence is 

inherently three-dimensional, depth integration of the transport equa- 

tions for the turbulence kinetic energy and its rate of dissipation 

cannot be strictly performed.  However, Rastogi and Rod! (1978) suggest 

model equations for the depth-averaged turbulence energy k , and its 

rate of dissipation e , can, in fact, be constructed if additional 

source terms are added to account for mechanisms originating from non- 

uniformity of the flow over the vertical dimension.  Furthermore, they 

12 



suggest that the resulting turbulent viscosity v  should be inter- 

preted such that when multiplied by the depth-averaged strain rate will 

yield the depth-averaged turbulent Reynold's stress.  By analogy, the 

depth-averaged Reynold's stress tensor I   is written 
mn 

Z       = v 
mn   t 

3(Vh)   3(V h) 
m       n 
ax 3X 

- f kh<5 
3   mn (27) 

where 

v„ = C — 
t   v . (28) 

20. The resulting model equations for the depth-averaged value of 

the turbulence energy k and its rate of dissipation e are written as 

follows: 

3(kh) , 8(vmkh) 

3t 3X m L 

3(kh) 
3X 
m 

h   k 
eh (29) 

and 

3 (eh) 
3t 

3(v eh) 
m 
3X 3X 

t 3(eh) 
J   3X + * (C.P. 

k  X h 
C_eh) + P£ (30) 

where 

3(V h)   3(V h) 
m       n 
3X 3X 

3(V h) 
m 
3X 

(31) 

21.  The source terms P.  and P  account for the production 

mechanism resulting from the presence of a vertical boundary layer.  The 

form of these production terms may be obtained by considering the 

i. 
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central portion of a unidirectional, uniform flow in a wide open chan- 

nel.  For this flow, the balance equations for k and  e reduce to 

P, = eh 
k 

(32) 

and 

P  = C0 e   2 
e h 

(33) 

To a good approximation, the total turbulence energy production over the 

vertical is written (Townsend 1956) : 

but, by definition, 

Pk = U*U 

2    2 

(34) 

(35) 

where c  is a nondimensional friction coefficient; therefore, 

p. = cir 
k 

(36) 

A similar relation may be obtained for the dissipation source P  by 

recalling that from Equation 28 

(37) 

which may be substituted into Equation 33 to yield 

c,c1/2-3/2h 
p  _ *   V 

14 

(38) 
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•p 

L 

Noting that 

u*u 
(39) 

and introducing the nondimensional dispersion coefficient D 

t 
hu\ (40) 

Equation 33 is rewritten: 

P - 
e 

. 1/2 5M„4 C2Cv c  U 

oD 
1/2 (41) 

22. Generalizing these results to two dimensions is simply a 

matter of replacing the unidirectional flow velocity U with the mag- 

nitude of the resultant two-dimensional velocity vector q , 

specifically: 

cq (42) 

and 

C2Cvc  q 

hD 1/2 
(43) 

23.  The interesting feature of this formulation is the introduc- 

tion of the nondimensional dispersion coefficient in Equation 41, which 

allows one to specify the value of the free stream turbulent eddy vis- 

cosity. Unfortunately, the value of D can vary over two orders of 

magnitude depending on the geometry of the channel, and, in particular, 

how one interprets the mechanisms it represents.  For example, if one 

interprets D as representing a vertical turbulent mixing coefficient, 

Elder (1959) shows that it assumes a value of about 0.07. However, if 

15 



one defines D to be a longitudinal dispersion coefficient for an 

infinitely wide open channel, its value is approximately 5.9. Between 

th«:se two extremes, an entire spectrum of values may be obtained if D 

is considered to be a transverse mixing coefficient. Depending on the 

cross-sectional shape and the longitudinal curvature of the channel 

investigated, a compilation of numerous experiments yields values rang- 

ing from 0.1 to 1.0 (Fischer et al. 1979).  Nonetheless* computational 

experience has shown (Chapman 1982) that a value of unity for the non- 

dimensional dispersion coefficient yields satisfactory results in the 

simulation of a depth-integrated wall boundary layer. 

Results of Steady-State Test Simulations 

24. The model problem chosen for the test simulations was flow in 

a wide, shallow, rectangular channel with an abrupt, symmetric expansion 

in width (Figure 1). The reasons for adopting this test problem are 

Figure 1. Three-dimensional definition sketch for a channel expansion 

essentially twofold.  First, a range of reliable nondimensional reattach- 

ment lengths x /V      are available in the form of review papers (Kim, 

Kline, and Johnston 1978; Durst and Tropea 1981; Eaton and Johnston, 

1981). Although the value of the measured nondimensional reattachment 

varies considerably from one experiment to the next, it was first 

16 
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pointed out by de Brederode and Bradshaw (1972) that much of the varia- 

tion in reattachment length measurements could be attributed in differ- 

ences in the aspect ratios of the test sections. The observation of 

de Brederode and Bradshaw is well illustrated in Figure 2, a plot of 

12 

10 

xr/W,      6 

0.01 

LEGEND 
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0.1 

D 

o 

/ 

h/Wg 
1.0 10.0 

Figure 2.  Experimental measurements of nondimensional reattachment 
lengths versus the inlet channel aspect ratio 

published measurements of reattachment lengths for symmetric channel 

expansions as a function of the upstream section aspect ratio,  h/W 

In this figure the trend of decreasing reattachment length with decreas- 

ing aspect ratio is clearly seen. 

25. The second reason for choosing the channel expansion test 

problem is that previous attempts at simulating this flow, using simple 

eddy viscosity models, predicted reattachment lengths that were three to 

four times too short (Abbott and Rasmussen 1977; Ponce and Yabusaki 

1981). 

26. The details of the test simulations are not presented herein; 

17 



however, they may be found in Chapman (1982) or Chapman and Kuo (1982). 

The results of the initial simulation applying the standard depth- 

integrated k-e turbulence closure model, as described in the previous 

section, are presented in Figure 3, a vector plot of the depth-integrated 

I • .  .      .  . # 0 * * * s s*~^**~~* • • 

n'.mur 

 * 

9INLET NOTE:   GRID POINTS ARE LOCATED AT THE 
MIDPOINT OF THE VELOCITY VECTORS 

Figure 3.  Depth-averaged velocity field for the standard 
(k-e) turbulence closure simulation 

velocity field.  In this simulation, the inlet section aspect ratio is 

about 0.1, which suggests that the nondimensional reattachment length 

x /W.  should be about 4.5 to 5.0. However, it is seen in Figure 2 that 

the predicted reattachment length is only about 3.2, which corresponds 

to an error of about 30 percent.  The poor agreement between model 

prediction and experimental measurements is directly attributable to 

dependence or the coefficient C  to the degree of curvature of the 

depth-mean streamlines (Leschziner and Rodi 1981).  In an attempt to 

improve upon the model predictions, an ad hoc approximation to the 

streamline curvature modification of Leschziner and Rodi (1981) was 

employed.  Specifically, the value of the coefficient C  was decreased 

to 0.03 at all grid points in the region behind the step for a distance 

of 6W. downstream. 

27.  The results of the curvature-corrected simulation are pre- 

sented in Figure 4 in which a significant increase in the length of the 

predicted reattachment length is seen. The value of the predicted 

reattachment length is about xr/W, = 4.6 , which agrees well with the 

experimental measurements depicted in Figure 2. 

18 
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NOTE:   GRID JOINTS ARE LOCATED AT THE 
MIDPOINT OF THE VELOCITY VECTORS 

Figure 4. Depth-averaged velocity field for curvature-corrected 
(k-e) turbulence closure simulation 

Model Limitations and Recommendations for Future Work 

28. The failure of the standard depth-integrated k-e turbulence 

closure formulation to predict correct reattachment lengths, and the 

marked improvement that was realized using an ad hoc streamline curva- 

ture correction, suggests that the complete streamline correction formu- 

lation of Leschziner and Rodi should be incorporated into the model. 

29. Secondly, the present model uses a simple explicit temporal 

uptake procedure to iterate the solution to steady-state. In order to 

apply the model to slowly varying environmental flows (i.e., tidal 

flows), it will be necessary to implement a version in which the water 

surface elevation is computed implicitly, which removes the overly 

restructive gravity wave propagation speed stability criteria (Johnson 

1980). 

30. Thirdly, if one desires to address rapidly varying transient 

phenomena, then the existing spatially third-order numerical technique 

QUICK (Quadratic Upstream Interpolation for Convective Kinematics) of 

Leonard (1979) must be modified in such a way that it will also be 

temporally third order. The resulting algorithm, which is called 

QUICKEST (Quadratic Upstream Interpolation for Convective Kinematics 

with Estimated Streaming Terms), was presented in one dimension by its 
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originator Leonard (1979) and extended to a general two-dimensional form 

by Hall and Chapman (1982). 

31.  Finally, at the present time, the locations of boundaries are 

programmed into the mainline of the code, which requires reprogramming 

with every new geometry configuration.  Consequently, it will be neces- 

sary to incorporate a flag system that will enable any boundary config- 

uration to be generated via input data. 
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